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Abstract

This paper addresses the subject of power quality data mining and the role of signal transforms played in the above
knowledge discovery process. We explore the performance of both Discrete Wavelet Transform (DWT) and S-transform
in the feature extraction and classification stages of this mining process In our work, wavelet transform and S-transform(ST)
were applied to transient power system data and pertinent features were extracted to further train a Learning Vector
Quantization network (LVQ) for power disturbance classification. It was found that the number of features and hence the
size and the training time of the LVQ network were considerably reduced in case of ST features. Also, the classification
accuracy of the LVQ classifier was increased in the case of time —domain featured disturbances, such as sags, swell,
etc when trained with ST features. Moreover, unlike Wavelet transform —based recognition system which is highly sensitive
to the presence of noise, in the case of S-transform based system results are found to be quite satisfactory up to a

noise level of 3.5%.
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I. INTRODUCTION

In recent years, concern over the quality of
electric power has been increasing rapidly since poor
electric quality causes many problems for the affected
loads, such as malfunctions, instabilities, short lifetime
and so on. Poor quality of electric power is normally
caused by line disturbances such as sags, notches and
glitches. In order to improve electric power quality the
sources and causes of such disturbances must be
known before appropriate mitigating actions can be
taken. Therefore, it is necessary to monitor these
disturbances by sampling the current and voltage
waveforms. Since transient power disturbances occur
in the order of microseconds, a single —captured event
recorded using this type of monitoring systems
produces megabytes of data. [1].Another important
aspect of power disturbance signals is the fact that the
information of interest is often a combination of features
that are well localized temporally or spatially (e.g.
transients in power systems) [2]. The recorded data at
a customer site could run into gigabytes in a year and
this poses a great challenge for data storage, analysis
and identification of disturbance data [3]. Thus raw
transient power signal data could be analyzed using
data mining techniques to provide knowledge about the
captured waveforms and this is called as Power Quality
Data Mining. Data Mining or knowledge discovery in
databases (KDD) is a process of automatic extraction
of novel, useful and understandable patterns from a

large collection of data. It can be viewed as a
multidisciplinary activity because it exploits several
research disciplines of artificial neural networks pattern
recognition, expert systems, as well as mathematical
disciplines such as statistics, information theory. A
typical data mining process consists of the following
steps data management, data preprocessing, data
mining tasks algorithms and post processing. Many
signal processing transforms like Fourier, Wavelet have
been widely used to transform the data from one
domain to the other and make them viable for
classification. Wavelet theory could naturally play an
important role in data mining since they have the
properties of vanishing moments, hierarchical and
multi-resolution decomposition structure, de-correlated
coefficients etc. First wavelets could provide
presentations of data that make the mining process
more efficient and accurate. Secondly wavelets could
be incorporated into the kernel of many data mining
algorithms [4]. Wavelets have been used extensively
for data management, preprocessing and data
transformation. The S- transform is an extension to the
ideas of wavelet transform, and is based on a moving
and scalable localizing Gaussian window. The
S-transform is unique in that it provides frequency
—dependent resolution while it maintains a direct
relationship with the Fourier spectrum [1]. S-transform
has been used in the transformation stage of power
quality data mining because it provides contours which
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closely resemble the disturbance patterns unlike the
wavelet transform and hence the features extracted
from it are very suitable for developing highly efficient
and accurate classification.

Power quality data mining consists of two basic
steps as given below

1. feature extraction
2. pattern recognition

In the feature extraction stage pertinent features
suitable for further classification are extracted. In the
second stage identification of power system patterns
like sag, swell, transient is done. In our work initially
wavelet transform was used to extract features from
the raw power system data. Wavelet Multiresolution
Analysis (MRA) is used along with Parseval’s theorem
to decompose the signal into thirteen levels and extract
the corresponding energy disturbance feature at that
level. These features were used to train a Learning
Vector Quantization (LVQ) network.  Secondly
S-transform, a phase corrected Wavelet- transform has
been used in the feature extraction stage. The number
of features extracted and hence the size of the LVQ
network and the training time are reduced. Also the
classification accuracy was increased in the case of
time- domain featured disturbances such as sag, swell
etc. Moreover the performance of the system was
found satisfactory up to a noise level of 3.5%.

IIl. DISCRETE WAVELET TRANSFORM

A. Wavelet Transform and Multiresolution Analysis
Technique

The Wavelet transform is a well-suited tool for
analyzing the high frequency transients in the presence
of low frequency components such as non-stationary
and non-periodic wideband signals [11]. The first main
characteristic in DWT is the MRA technique that can
decompose the original signal into several other signals
with different levels (scales) of resolution. From these
decomposed signals, the original time-domain signal
can be recovered without losing any information. The
recursive mathematical representation of the MRA is
as follows:

Vi = Wi® Viy = Wig® Wip.. ® Wi® V(1)

Where

Vi1  approximated version of the given signal at
scale j+1;

W1 detailed version that displays all transient
phenomena of the given signal at scale

j+1;
@ Denotes a summation of two decomposed
signals;
n the decomposition level.
Fig. 1 llustrates the three decomposed

/reconstructed levels of the DWT algorithm
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Fig.1 Three decomposed/reconstructed levels of DWT.

At each decomposition level, the length of the
decomposed signals (e.g., vy and wy) is half that of
the signals(xp) in the previous stage.

B. Parseval’'s Theorem In DWT Application

In Parseval’s theorem, assuming a discrete signal
x[n] is the current that flows through the 1Q
resistance, then the consumptive energy of the
resistance is equal to the squared sum of the spectrum
coefficients of the Fourier transform in the frequency
domain

vy kip= Y e @
= =

where N is the sampling period, and ay is the
spectrum coefficients of the Fourier transform.

To apply the theorem to the DWT, we use
relevant mathematical equations for DWT and (2) to
obtain (3) that is the Parseval's theorem in the DWT
application

1 2_1o1, |2 ~(3)
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Hence, through the DWT decomposition, the
energy of the distorted signal is shown by (3). The first
term on the right of (3) denotes the average power of
the approximated version of the decomposed signal,
while the second term denotes that of the detailed
version of the decomposed signal. The second term
giving the energy distribution features of the detailed
version of distorted signal will be employed to extract
the features of power disturbance.

ll. MULTIRESOLUTION S-TRANSFORM

The Fourier transform of a time varying signal
h(t) is given by

- (4)
Hih= | heye? o

— oo

The spectrum H (f) is referred to as the
“time-averaged spectrum.” If the signal h (t) is multiplied
point by point with window function g (1), then the
resulting spectrum is

o ()
Hih= | hygn ™o

— oo

The S-transform is obtained by defining a
particular window function in the form of a normalized
Gaussian as

2
g(t)=%c6'([2/2°) ..(6)

and then allowing the Gaussian to be a function of
translation t and dilation ¢ (window width). The window
width o is made proportional to the inverse of
frequency and is chosen as

1 .(7)
a+ bif

o=

If a=0,0(f) denotes S-transform and for
b=0, o (f) denotes a STFT. A typical value of b varies
between0.333 to 5, giving different frequency
resolutions. For low frequencies, a higher value of b is
chosen and for high frequencies, lower value of bis
chosen to provide suitable frequency resolutions.

The FT of the window function is g (f), obtained
as

o 1Y .(8)
Gu=e" (m}

S-transform produces a multiresolution analysis
like a bank of filters with a constant relative bandwidth
(constant analysis). The analysis window w (tfis
Gaussian and

e 9)
[ gana=1

Therefore

e ..(10)
[ hosana=Hw

— oo

Substituting (5) and (6) in (4), we get the
S-transform of h () as

w (1)
sth= [ hiogur-he P e

— oo

Since S (1, f) is complex, it can also be written
as

S(rh=A(rhePed .(12)

where A(x, f) is amplitude S-spectrum and ¢ (7, ) is
the phase S-spectrum. It can be noted that the
S-transform improves the STFT in that it has a better
resolution in phase space (i.e., @ more narrow time
window for higher frequencies) giving a fundamentally
more sound time frequency representation. The discrete
version of the S-transform is calculated by taking the
advantage of the efficiency of the fast Fourier transform
(FFT) and the convolution theorem. The discrete
Fourier transform of the sampled signal h (kT),
k=0,1,N-1is

1 - .(13)
no{_1 —i@2mn
H[NT}_N Y hkDe

k=0

and discrete version of the S-transform of h(kT) is
obtained as (by letting f— n/NT and t© — jT)
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IV. FEATURE EXTRACTION
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N-1 ...(1 4)
(ri T A o
m=0 S-TRANSFORM
Where
A. Signal Modeling
G(mn)=e—@r°nt o2/ ..(15)

a=1/b,j,m, and n=0,1,2,... N—1 and N= total

number of samples.

The discrete inverse of S-transform is obtained
as given by (16). The various steps for computing
S-transform are outlined as follows.

N—1 N—1
1 n . '
hkD=5 3, > S[W/T} ¢ @m

n=0 j=0

.(16)

1. Denote n/NT, m/NT, kT, and jTas n, m, k, and j,
respectively, for all of the computations.

2  Obtain discrete Fourier transform H (m) of the
original time-varying signal h (¢, with N points
and sample interval T, using FFT routine from
(13).

3. Compute the localizing Gaussian G [n,m] for the
required frequency using (15).

4,  Shift the spectrum H/m] to H [m+n] for the
frequency n by using convolution theorem.

5. Determine B (n,m)=H(m+n).G(m+n).

6. Compute inverse Fourier transform of B (nm)
from m to j to give the row of S/n,j] corresponding
to the frequency n.

7. Repeat steps 3, 4, and 5 until all of the rows of
S [n,j] corresponding to all discrete frequencies
have been obtained.

The total number of operations for computing
S-transform is N (N+NiogN).

The multiresolution S-transform output is a
complex matrix, the rows of which are the frequencies
and the columns are the time values. Each column thus
represents the “local spectrum” for that point in time.
Also, frequency-time contours having the same
amplitude spectrum are obtained to detect, and localize
power disturbance events.

Signals were generated by using parametric
equations as given in Table 1 and Table 2 .It was
possible to change testing and training signal
parameters in a wide range and in a controlled manner.
These signals are also mixed with random white noise
of zero mean. Ten cycles of power frequency (50 Hz,
amplitude 1p.u.) were taken under consideration and
sampled at the rate of 15.2 Khz. The disturbances
namely sag, swell, harmonics, transients were
simulated using matlab.

Table I. Parametric Eqns for simulation of
distorted signals

Event Equation

Pure sine
Sudden Sag

v(t)=sin(wt)
(
Sudden Swell | v(
(

)=
v(t) =(1-ss((t-t2)-(t-11))) sin(wt)

) = (1+sw((t-12)-(t-t1))) sin(wt)
)=(1

t

Harmonics v(t

sin(wt)+2sin(3wt)+3sin(5wt)+.. ... ...)

(w
Transient ( )=(sin(wt)+ss exp(-(t-tb)/)osc)
sin(w(t-tb))

Table Il. Parametric variations of simulated

signals
Event Parametric variation
Pure sine Amplitude 1,frequency 50 Hz
Sudden Sag |Duration (t2-t1)=(0-9)T

Amplitude ss=0.3-0.8

Sudden Swell |Duration (t2-11)=(0-9)T
Amplitude $s=0.3-0.8

Harmonics Order 3,5,7 amplitudes 0-.9
frequency=100-400Hz
Transient Time const: 0.008-0.04 s

frequency=100-400Hz
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B. Feature Extraction using DWT

Energy distribution feature

Wavelet MRA along with Parseval's theorem was
employed to decompose the original signal into thirteen
levels and extract the corresponding detailed energy
concentration at that level. Thirteen features were
extracted for each of the thirteen levels along with the
disturbance duration (total of 14 features). These
fourteen features were given as inputs to a LVQ
network Fig 2 shows the energy distribution for a swell
disturbance. Ten cycles of power frequency were
considered of which three cycles had a swell of 0.8
p.u. Figs 3, 4, 5, 6 show sag, outage, harmonics,
transient signals and their respective energy distribution
diagram.
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Duration of Electromagnetic Transient:

In general, when a transient disturbance occurs,
the stable power signal will generate a discontinuous
state at the start and end points of the disturbance
duration. Employing the DWT technique to analyze the
distorted signal through one-level decomposition of the
MRA will cause the wavelet coefficients wy at the start
and end points of the disturbance to generate severe
distribution variation. Therefore, we can easily obtain
the start time £ and end time ¢, of the disturbance
duration from the variations in absolute wavelet
coefficients wyand calculate the disturbance duration 4

ttzlte—tsl (16)
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Fig. 3 (a) Voltage sag (b) corresponding energy
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C. Feature extraction using S-transform

The S-transform yields contours which are very
much viable to visual inspection. An example of 3 cycle
sag disturbance has been considered. Fig 7 (a) shows
the disturbance signal (b) amplitude Vs time (c)
amplitude Vs normalized frequency. Fig 7 (b) has been
obtained by searching rows of S-transform matrix.
There is a reduction in magnitude during the three
cycles of sag. Similarly Fig. 7 (c) gives the maximum
frequency content of the voltage signal. Fig 8 shows
the time-frequency contours. Visual inspection of the
contours shows that the curves follow the disturbance
pattern. Fig 9,10,11,12 represent similar curves for
swell, harmonics signals.
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Fig. 7. S-transform plots for sag (a) signal (b)
amplitude Vs time (c) amplitude Vs freq (d) dwt coeff

The features that were extracted by applying
S-transform are as follows

1. The standard deviation (std1) of the
lowest-transform  contour that is above the
normalized fundamental frequency.

2. The standard deviation(std2) of the amplitude Vs
time curve obtained from, the rows of the
S-transform matrix that is above two times the
normalized frequency.

3. amp=max(Sa)+min(Sa)-max(Sb)-min(Sb)

where Sa denotes the rows of the S-matrix output
with disturbance, and Sb denotes the corresponding
output without disturbance. It is to be noted that for
the window factor (alpha) is set as alpha =2 for sag,
swell and harmonics and pure sine whereas for
transients alpha is taken as 3. The number of features
extracted were three along with duration of disturbance

freq Say of 50%
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tt (4 features). The number of features is four when
compared to fourteen features in wavelet transform.
This reduction in number of features leads to reduction
in size of the neural classffiers.
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Fig. 10 S-transform contours for swell Freq Vs time
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V. CLASSIFICATION RESULTS USING
LEARNING VECTORNETWORK (LVQ)

A. Wavelet based LVQ

Five categories of power system disturbances
were simulated, namely swel I(S1), sag (S2), harmonics
(S3) transient1 (S4), transient 2 (S5).Transient 1 has
a spectral component of 500 Hz and duration of .005
sec while transient 2 has a duration of. 01 sec. Pure
sine wave is considered to be class zero. For each of
the five classes, 50 different signals were generated
accounting for a total of 250. The signal parameters
were changed as given in the Table | and Tablell. 14
features were extracted by applying wavelet MRA and
Parseval's theorem for each disturbance signal .Table
[l A and B show features extracted by DWT while
Table IV show that extracted by S-transform. 25 signals
of each class were used for training and the rest for
testing network with and without noise. Table V,VI, give
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the classification results of wavelet based LVQ network
with and without noise. Every row gives the information
as to how many signals belonging to a class were
actually classified or misclassified. The classification
results were not very accurate in case of transients,
sags, swells. Also accuracy dropped with noise.

B. S-transform based LVQ

The S-transform based classifier showed better
results than the wavelet classifier for both without and
with the presence of noise. Table VII, VIII, give the
classification results of S-transform based LVQ network
with and without Also it shows better classification
accuracy in case of transients, sag and swells.

VI. CONCLUSION

In this paper, a comparative study of wavelet and
S-transform in the feature extraction stage and
classification stage has been done. The wavelet
transform is better than the Fourier transform; yet it

Table lll. Features Extracted By Dwt

00 500 | vt | level2 | leveld | leveld | levels | levels | level7 | %%
swell 2.46E-08 | 3.51E-07 | 0.002 1.25E-05 | 8.11E-05 | 0.0035 0.2205 1
sag 1.72E-08 | 2.86E-07 | 0.0019 | 8.70E-06 | 5.33E-05 | 0.002 0.1007 2
harmonics 1.28E-07 | 2.62E-06 | 0.065 0.00169 | 0.01661 0.0151 0.1147 3
Transient .005sec | 4.98E-07 | 5.76E-06 0.22 0.00206 | 0.00086 | 0.0023 0.1315 4
Transient .01sec | 4.99E-07 | 6.07E-06 0.3 0.00272 | 0.0033 0.0022 0.1311 5
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B
signal P | lovels | leveld | leveld | leveltl | loveii2 | levets | | €SS
swell 0.59009 | 0.00061 | 0.0013 0.0052 0.0012 0.0017 0.06 1
sag 0.2641 | 0.00533 | 0.0008 0.0021 0.0007 0.0011 0.06 2
harmonics 0.30155 | 0.00207 | 0.0014 0.0058 0.0016 0.0024 0.0001 3
Transient .005sec | 0.34717 | 0.0015 0.0006 0.0025 0.0009 0.0015 0.005 4
Transient .01sec | 0.34949 | 0.00137 | 0.0007 0.0025 0.0009 0.0014 0.01 5
Table IV. Features Extracted By S-Transform
Type std1 std2 amplitude tt class window
swell 90% 0.1771 0.0838 0.8989 0.06 1 alpha=0.2
swell 10% 0.0197 0.0094 0.0988 0.06 1 alpha=0.2
sag 90% 0.0195 0.0091 —0.0999 0.06 2 alpha =0.2
sag 10% 0.1768 0.0811 —0.8994 0.06 2 alpha =0.2
Harmonics 0.0003 0.014 —0.0347 0.01 3 alpha=0.2
transient(.01sec) 0.0045 0.126 0.1386 0.0001 4 alpha =3
transient1(.005sec) 0.0002 0.0523 0.001 0.005 S alpha =3
pure sine 1E-06 1E-06 1E-06 0.2 0 alpha=0.2
Table V. Wavelet - transform based LVQ without noise
swell $1 sag S2 harmonics S3 | transient1S4 | transient2 S5 | puresine SO
swell S1 22 3
sag S2 22 3
harmonics S3 24 1
transient! S4 21 2 2
transient2 S5 2 21 2

Classification accuracy=94%
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Table VI. Wavelet - transform based LVQ with noise of 3.5%

swell S1 sag S2 harmonics S3 | transient1S4 | transient2 S5 | puresine S0
swell S1 21 4
sag S2 21 4
harmonics S3 23 2
transient! S4 20 2 3
transient2 S5 2 20 3

Classification accuracy=92%
Table VII. S - transform based LVQ without noise

swell S1 sag S2 harmonics S3 | transient1S4 | transient2 S5 | puresine S0
swell S1 24 1
sag S2 24 1
harmonics S3 24 1
transient! S4 23 1 1
transient2 S5 1 23 1

Classification accuracy=97.2%
Table VIII. S - transform based LVQ with noise of 3.5%

swell S1 sag S2 harmonics S3 | transient1S4 | transient2 S5 | puresine S0
swell St 23 2
sag S2 23 2
harmonics S3 24 1
transient! S4 22 2 1
transient2 S5 2 22 1

Classification accuracy=95.6%

requires a large number of neural networks. Moreover
the classification accuracy of a wavelet-based
recognition system may be limited if an important
disturbance frequency component has not been
precisely extracted by the wavelet MRA. Also its
performance in presence of noise is unsatisfactory. The
S-transform with a variable window is used to generate
contours and feature vectors that reduce the network
size and training time of the neural classifiers. The
proposed S-transform based LVQ network uses only
four features when compared to 14 features in the
wavelet - based system. This increases the

computational accuracy and reduces memory space.
Moreover S-transform has more noise immunity than
DWT based classifiers. The average classification
accuracy of S-transform based LVQ network is 96.4%
whereas its wavelet counterpart has an accuracy of
93%
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